5019 measured reflections

 $R_{\rm int} = 0.029$

2410 independent reflections

1937 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-[3-(2-Pyridyl)-1H-pyrazol-1-yl]propanamide

Feng Huang, Bin Jin and Jian-Feng Zhang*

State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China Correspondence e-mail: zjf@nbu.edu.cn

Received 8 May 2009; accepted 20 May 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.045; wR factor = 0.139; data-to-parameter ratio = 16.5.

In the title compound, $C_{11}H_{12}N_4O$, the pyrazole and pyridine rings are nearly coplanar [dihedral angle = $1.87 (5)^{\circ}$]. Adjacent molecules are linked by N-H···N and N-H···O hydrogen bonds into a linear chain running along the c axis.

Related literature

For the chemistry of 3-(2-pyridyl)pyrazoles, see: Ruben et al. (2004); Steel (2005).

Experimental

Crystal data

$C_{11}H_{12}N_4O$	$\gamma = 90.40 \ (3)^{\circ}$
$M_r = 216.25$	V = 536.4 (2) Å ³
Triclinic, P1	Z = 2
a = 7.7446 (15) Å	Mo $K\alpha$ radiation
b = 8.3517 (17) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 8.4804 (17) Å	T = 293 K
$\alpha = 97.99 \ (3)^{\circ}$	$0.58 \times 0.55 \times 0.27$
$\beta = 98.95 \ (3)^{\circ}$	

Data collection

```
Rigaku R-AXIS RAPID
  diffractometer
Absorption correction: multi-scan
  (ABSCOR; Higashi, 1995)
  T_{\min} = 0.947, \ \tilde{T}_{\max} = 0.972
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	146 parameters
$vR(F^2) = 0.139$	H-atom parameters constrained
S = 1.12	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
2410 reflections	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1A···O1 ⁱ	0.86	2.11	2.968 (2)	175
$N1 - H1B \cdot \cdot \cdot N4^{ii}$	0.86	2.21	3.055 (2)	167

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y, z - 1.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This project was sponsored by the K. C. Wong Magna Fund of Ningbo University, and supported by the Project of Zhejiang Province Science and Technology Program (grant No. 2008 C21043) and Programs of the Ningbo Natural Science Foundation (grant No.2007 A610053). We thank Ms H.-L. Zhu and Y. Zhou for their help with the structure analysis and Mr W. Xu for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2581).

References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Ruben, M., Rojo, J., Romero-Salguero, F. J., Uppadine, L. H. & Lehn, J. M. (2004). Angew. Chem. Int. Ed. 43, 3644-3662.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Steel, P. J. (2005). Acc. Chem. Res. 38, 243-250.

mm

supplementary materials

Acta Cryst. (2009). E65, o1411 [doi:10.1107/S1600536809019060]

3-[3-(2-Pyridyl)-1H-pyrazol-1-yl]propanamide

F. Huang, B. Jin and J.-F. Zhang

Comment

Great attention has been paid to 3-(2-pyridyl)pyrazole-based ligands in the area of coordination chemistry, not only due to they can act as bridging or chelate ligands and their intriguing structures, but also for their potential applications as functional materials (Ruben *et al.*, 2004; Steel *et al.*, 2005). Herein, We report the structure of a *N*-Pyrazolylpropanamide ligand, $C_{11}H_{12}N_4O$ (Scheme 1).

As is shown in Figure 1, in the title compound, the dihedral angle between pyrazole and pyridine ring is 1.87 (5)°, and the torsion angle of N3—C6—C7—N4 is 179.36 (2)°. The molecules are formed into a three-dimensional supermolecular network through intermolecular weak N—H···N (N···N= 3.055 (2) Å) and N—H···O (N···O= 2.968 (2) Å) hydrogen bonds (Figure 2). The hydrogen bond geometry parameters are list in Table 1. Weak π - π stacking interactions between pyrazole ring (N2/N3/C6/C5/C4) and pyridine ring (N4/C7/C8/C9/C10/C11) (symmetric code: -*x*, -*y*, 2 - *z*), with a centroid-to-centroid distance of 3.828 (1)Å and interplanar distance of 3.739 (1) Å, help to stabilize the crystal structure.

Experimental

A mixture of 3-(2-pyridyl)pyrazole (2.9 g, 20 mmol), sodium hydroxide (0.16 g, 4 mmol), N,N-dimethylformamide(DMF)(100 ml) was stirred and heated to 373 k. A solution of acrylamide (1.44 g, 20 mmol) solubilized in DMF(10 ml)was added dropwise over a period of 10 minutes. After 7 h, heating was then terminated, and the solution was cooled to room temperature. The mixture was filtered, and DMF was removed by vacuum distillation. The product was then recrystallized from ethanol (yield: 64.7%; mp: 427 K). Calculated for C₁₁H₁₂N₄O: C 61.10, H 5.59, N 25.91%; found: C 60.03, H 5.48, N 25.86%.

Refinement

H atoms bound to C and N atoms were positioned geometrically and treated in the subsequent refinement as riding atoms, with C—H = 0.93 (aromatic) or 0.97 Å (methylene) and N—H = 0.86 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C,N)$.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 45% probability level.

Fig. 2. Partial packing view of the title compound. Dashed lines indicate N—H…N and N—H…O hydrogen bonds.

3-[3-(2-Pyridyl)-1H-pyrazol-1-yl]propanamide

Crystal data	
C ₁₁ H ₁₂ N ₄ O	Z = 2
$M_r = 216.25$	$F_{000} = 228$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.339 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073 \text{ Å}$
a = 7.7446 (15) Å	Cell parameters from 5019 reflections
b = 8.3517 (17) Å	$\theta = 3.2 - 27.4^{\circ}$
c = 8.4804 (17) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 97.99 \ (3)^{\circ}$	T = 293 K
$\beta = 98.95 \ (3)^{\circ}$	Block, colorless
$\gamma = 90.40 \ (3)^{\circ}$	$0.58 \times 0.55 \times 0.27 \text{ mm}$
V = 536.4 (2) Å ³	

Data collection

Rigaku R-AXIS RAPID diffractometer	2410 independent reflections
Radiation source: fine-focus sealed tube	1937 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.029$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\text{max}} = 27.4^{\circ}$
T = 293 K	$\theta_{\min} = 3.2^{\circ}$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -10 \rightarrow 10$
$T_{\min} = 0.947, T_{\max} = 0.972$	$l = -10 \rightarrow 10$
5019 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.045$	$w = 1/[\sigma^2(F_0^2) + (0.0807P)^2 + 0.0265P]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.139$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.12	$\Delta \rho_{max} = 0.37 \text{ e} \text{ Å}^{-3}$

2410 reflections

146 parameters

 $\label{eq:phi} \Delta \rho_{min} = -0.27 \ e \ \text{\AA}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 2008),

 $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.038 (11) Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
N1	0.41230 (16)	0.30020 (14)	0.39463 (14)	0.0502 (3)
H1A	0.5037	0.3623	0.4058	0.060*
H1B	0.4039	0.2110	0.3293	0.060*
01	0.28772 (12)	0.46829 (11)	0.57395 (12)	0.0495 (3)
C1	0.28366 (17)	0.34222 (15)	0.47849 (14)	0.0391 (3)
C2	0.13022 (19)	0.22241 (18)	0.44677 (16)	0.0509 (4)
H2A	0.0683	0.2257	0.3387	0.061*
H2B	0.1748	0.1145	0.4503	0.061*
C3	0.00195 (18)	0.25207 (18)	0.56416 (17)	0.0477 (4)
НЗА	-0.0373	0.3623	0.5664	0.057*
H3B	-0.0994	0.1801	0.5266	0.057*
N2	0.07610 (14)	0.22676 (13)	0.72718 (13)	0.0403 (3)
C4	0.0879 (2)	0.33312 (17)	0.86282 (18)	0.0500 (4)
H4A	0.0518	0.4395	0.8703	0.060*
C5	0.1622 (2)	0.25694 (17)	0.98736 (17)	0.0496 (4)
H5A	0.1874	0.2996	1.0959	0.060*
C6	0.19232 (15)	0.09985 (15)	0.91577 (15)	0.0367 (3)
N3	0.13956 (14)	0.08220 (13)	0.75618 (13)	0.0401 (3)
C7	0.26942 (15)	-0.03550 (14)	0.99317 (15)	0.0368 (3)
C8	0.28816 (18)	-0.18581 (16)	0.90392 (18)	0.0457 (3)
H8A	0.2547	-0.2021	0.7926	0.055*
C9	0.3569 (2)	-0.30988 (17)	0.9829 (2)	0.0555 (4)
H9A	0.3706	-0.4110	0.9253	0.067*
C10	0.4054 (2)	-0.28298 (19)	1.1479 (2)	0.0576 (4)
H10A	0.4498	-0.3655	1.2041	0.069*
C11	0.3862 (2)	-0.13031 (19)	1.22693 (19)	0.0538 (4)
H11A	0.4210	-0.1116	1.3381	0.065*

supplementary materials

N4	0.32045 (15	5) -0.0070	8 (14) 1.153	54 (14)	0.0451 (3)	
Atomic dis	placement parameter	rs $(Å^2)$				
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
N1	0.0535 (7)	0.0437 (6)	0.0500 (7)	-0.0114 (5)	0.0099 (5)	-0.0069 (5)
01	0.0528 (6)	0.0395 (5)	0.0531 (6)	-0.0070 (4)	0.0085 (5)	-0.0038 (4)
C1	0.0461 (7)	0.0361 (6)	0.0327 (6)	-0.0044 (5)	-0.0025 (5)	0.0070 (5)
C2	0.0590 (9)	0.0539 (8)	0.0366 (7)	-0.0193 (7)	0.0031 (6)	0.0012 (6)
C3	0.0437 (7)	0.0515 (8)	0.0466 (8)	-0.0067 (6)	-0.0011 (6)	0.0121 (6)
N2	0.0428 (6)	0.0378 (6)	0.0409 (6)	0.0012 (4)	0.0078 (4)	0.0057 (4)
C4	0.0662 (9)	0.0374 (7)	0.0486 (8)	0.0102 (6)	0.0171 (7)	0.0040 (6)
C5	0.0715 (9)	0.0410 (7)	0.0364 (7)	0.0097 (6)	0.0124 (6)	0.0007 (5)
C6	0.0361 (6)	0.0354 (6)	0.0389 (7)	-0.0020 (5)	0.0092 (5)	0.0028 (5)
N3	0.0408 (6)	0.0356 (5)	0.0421 (6)	-0.0008 (4)	0.0037 (4)	0.0019 (4)
C7	0.0326 (6)	0.0358 (6)	0.0418 (7)	-0.0022 (5)	0.0071 (5)	0.0031 (5)
C8	0.0439 (7)	0.0412 (7)	0.0479 (8)	0.0025 (5)	0.0031 (6)	-0.0025 (6)
C9	0.0539 (8)	0.0384 (7)	0.0704 (10)	0.0086 (6)	0.0045 (7)	-0.0001 (7)
C10	0.0580 (9)	0.0467 (8)	0.0698 (11)	0.0122 (7)	0.0072 (7)	0.0175 (7)
C11	0.0603 (9)	0.0545 (8)	0.0469 (8)	0.0079 (7)	0.0048 (6)	0.0120 (7)
N4	0.0515(7)	0.0417 (6)	0.0417 (6)	0.0033 (5)	0.0072 (5)	0.0041 (5)

Geometric parameters (Å, °)

0.9300 1.3386 (16) 1.4693 (18) 1.3431 (18)
1.3386 (16) 1.4693 (18) 1.3431 (18)
1.4693 (18) 1.3431 (18)
1.3431 (18)
1.3938 (19)
1.377 (2)
0.9300
1.378 (2)
0.9300
1.376 (2)
0.9300
1.3389 (19)
0.9300
104.82 (13)
127.6
127.6
110.81 (12)
120.56 (11)
128.63 (12)
104.84 (10)
121.89 (13)
116.74 (11)

C3—C2—H2B	108.6	C8—C7—C6	121.38 (12)
C1—C2—H2B	108.6	C9—C8—C7	119.08 (14)
H2A—C2—H2B	107.6	С9—С8—Н8А	120.5
N2—C3—C2	112.93 (12)	С7—С8—Н8А	120.5
N2—C3—H3A	109.0	C8—C9—C10	119.41 (14)
С2—С3—НЗА	109.0	С8—С9—Н9А	120.3
N2—C3—H3B	109.0	С10—С9—Н9А	120.3
С2—С3—Н3В	109.0	C11—C10—C9	118.01 (15)
НЗА—СЗ—НЗВ	107.8	C11—C10—H10A	121.0
C4—N2—N3	111.95 (11)	C9—C10—H10A	121.0
C4—N2—C3	127.56 (12)	N4—C11—C10	123.96 (15)
N3—N2—C3	120.47 (11)	N4—C11—H11A	118.0
N2—C4—C5	107.59 (13)	C10—C11—H11A	118.0
N2—C4—H4A	126.2	C11—N4—C7	117.61 (12)
С5—С4—Н4А	126.2		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1A···O1 ⁱ	0.86	2.11	2.968 (2)	175
N1—H1B…N4 ⁱⁱ	0.86	2.21	3.055 (2)	167
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$; (ii) $x, y, z-1$.				

Fig. 2